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Abstract

We show that the empirical mass function associated with a sequence of i.i.d. discrete random
variables converges in lr at the (n/log2n)1/2 rate, for all r ≥ 2. For r < 2 the rate is shown to
fail for heavy tailed distributions. The threshold case of r = 2 is explored in detail.
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1. Introduction

Let X,X1, X2, . . . be an i.i.d. sequence of discrete random variables taking values in
V := {v1, v2, . . .}. For k, n ≥ 1 define pk := Pr (X = vk), and the sample proportion

pk:n :=
(

1
n

) n∑
j=1

I (Xj = vk)

By Scheffe’s theorem, the empirical mass function p̃n := (p1:n, p2:n, . . .) converges to its
limit p̃ := (p1, p2, . . .) with probability one, under any of the lr metrics, 1 ≤ r ≤ ∞. Of
interest is the rate at which this convergence occurs.

For r > 0, let ‖x̃− ỹ‖r denote the lr distance between the vectors x̃ and ỹ, for t > 0
let log2(t) denote the modified iterated logarithm log log max(ee, t), and let S∞ denote
the ∞-dimensional simplex. If p̃ has finite support, then the result

lim sup
n→∞

√
n

log2 n
‖p̃n − p̃‖∞ = max

k

√
2pk(1− pk) <∞, a.s. (1)
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is an easy consequence of the law of the iterated logarithm (LIL) for Bernoulli sequences.
That the above holds in general follows from Olshen and Siegmund (1971), suggesting
that

L (r; p̃) := lim sup
n→∞

√
n

log2 n
‖p̃n − p̃‖r (2)

is a quantity of interest. We observe that L (r; p̃) is almost surely a constant (possibly
infinite) by the Hewitt-Savage zero-one law. For convenience, we use L (r; p̃) to represent
this constant. Our interest here is primarily in L (2; p̃), the reason being that r = 2 is
the threshold value of r at which sup{L (r; p̃)| p̃ ∈ S∞} is finite. Specifically, we show in
section 2 (see also statement (10)) that

sup
r≥2;p̃

L (r; p̃) ≤ 2(4−r)/2r (3)

while, for suitably heavy tailed distributions, L (r; p̃) = ∞ for all r < 2. In section 3
we show that L (2; p̃) is uniquely maximized over S∞ (rather surprisingly) at the uni-
form distribution on two points. In section 4 we provide an error bound for a natural
approximation of L (2; p̃), to any desired level of accuracy.

For convenience we will assume (with no loss) that pk is non-increasing in k. By < ·, · >
we denote the inner product of l2. We use ‖ · ‖ for the operator norm (this should be
clear from the context). If x̃ is a vector with i-th component xi, by

√
x̃ (resp., x̃α) we

denote the vector whose i-th component is
√
xi (resp., xα

i ).

2. The Finiteness of L (2; p̃) on S∞

Our first result establishes the (n/log2n)1/2 rate of l2 convergence of the empirical mass
function to its limit, and provides an exact expression for L (2; p̃). This exact expression,
while not in closed form, can nonetheless be bounded by a finite constant, independent
of p̃ in S∞. This, together with statement (1), yields a uniform bound on L(r; p̃) over
p̃ in S∞ and r ≥ 2. On the other hand, Example 1 will show that for heavy tailed p̃,
L(r; p̃) = ∞ for all r < 2.

Theorem 1. We have for p̃ in S∞,

L (2; p̃) =

2 sup


∑
k≥1

p2
k

ak −
∑
l≥1

plal

2 ∣∣∣∣∑
k≥1

pka
2
k ≤ 1




1
2

<∞ (4)

Moreover, we have statement (3).

PROOF. Define the kernel h(·, ·) by

h(i, j) = I{i=j} − (pi + pj) +
∑
k≥1

p2
k, i, j = 1, 2, . . .

We have
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(
n

log2 n

) ∞∑
j=1

(pn
j − pj)2 =

(
2

n log2 n

) ∑
1≤i<j≤n

h(Xi, Xj)

+
(

1
log2 n

)1 +
∑
k≥1

p2
k


−
(

2
log2 n

)(∑n
i=1 pXi

n

)
= An +Bn + Cn

It is easy to check that An is a canonical U-statistic of order 2. By (Dehling, 1989) we
have

lim supAn = 2 sup


∑
k≥1

p2
k

ak −
∑
l≥1

plal

2 ∣∣∣∣∑
k≥1

pka
2
k ≤ 1

 a.s.

As n → ∞, Bn vanishes trivially, while Cn vanishes in the almost sure sense by the
strong law of large numbers. Hence we have (4). Towards showing (3) we observe that
by (1) we have,

lim sup
√

n

log2 n
‖p̃n − p̃‖r ≤ L (2; p̃)2/r lim sup

(√
n

log2 n
‖p̃n − p̃‖∞

) (r−2)
r

= L (2; p̃)2/r

(
2 max

k
(pk(1− pk))

) (r−2)
2r

(5)

Also, as a consequence of Var (Y ) ≤ E
(
Y 2
)

we have

∑
k≥1

p2
k

ak −
∑
l≥1

plal

2

≤
∑
k≥1

pka
2
k. (6)

From (6) we have L (2; p̃) ≤
√

2, and this with (5) yields (3).

Remark 1. The proof in Olshen and Siegmund (1971) establishes also the (n/log2n)1/2

rate under lr for r ≥ 4. In the case when p̃ has a finite support, the problem can be
tackled for all lr (r > 0) using the LIL for random vectors taking values in Rk (in a
manner similar to the proof of Lemma 3 in Finkelstein (1971)).

Example 1. Suppose that the tail of p̃ is sufficiently heavy so that(
n

log2 n

) r
2 ∑

k>n

(pk)r →∞, ∀r < 2. (7)

Then with Hn = V − {X1, ..., Xn}, we have√
n

log2 n
‖p̃n − p̃‖r ≥

√
n

log2 n

( ∑
k∈Hn

(pk)r

) 1
r

≥
√

n

log2 n

(∑
k>n

(pk)r

) 1
r

→∞ (8)

and thus L (2; p̃) = ∞ for all r < 2. For an example of a suitably heavy tailed p̃, take
pk ∝

(
k[log k]2

)−1 for k ≥ 1.
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3. The Maximizer of L (2; p̃) on S∞

Towards finding the maximizer of L (2; p̃) in S∞ we define the function ψ(·) on the
space S∞ of mass functions as

ψ(p̃) := sup


∑
k≥1

p2
k

ak −
∑
l≥1

plal

2 ∣∣∣∣∑
k≥1

pka
2
k ≤ 1


and we observe that L (2; p̃) =

√
2ψ(p̃).

By Sp̃ we denote the operator from l2 to l2 defined by

Sp̃(x̃) =

pixi +

√pi

∑
j≥1

p2
j − p

3/2
i

 <√p̃, x̃ > −√pi < p̃3/2, x̃ >


i≥1

,

for x̃ ∈ l2. Our interest in Sp̃ arises from ψ(p̃) = sup‖x̃‖=1 x̃
′
Sp̃(x̃). It is easy to check

that Sp̃ is a Hilbert-Schmidt operator and that its Hilbert-Schmidt squared norm (see
section XI.6 of (Dunford and Schwartz, 1963)) is given by

∑
j≥1

p2
j (1− 2pj) +

∑
j≥1

p2
j

2

.

As every Hilbert-Schmidt operator is compact (Theorem 6 of section XI.6 in (Dunford
and Schwartz, 1963)) and Sp̃ is self adjoint, we have that Sp̃ is a compact self adjoint
operator. Now by Theorem 3 of section X in (Dunford and Schwartz, 1963) we have,

ψ(p̃) = sup
‖x̃‖=1

x̃
′
Sp̃(x̃) = λ,

where λ is the maximum eigenvalue of Sp̃. We note also that
√
p̃ is a zero eigenvector of

Sp̃, i.e. Sp̃(
√
p̃) = 0.

Before delving further, it is instructive to calculate L (2; p̃) for some known distribu-
tions with finite support. In these cases, Sp̃ is a symmetric non-negative definite matrix.

Example 2 (Two Point Support). The simplest of discrete distributions are the ones
with a two point support. In this case by the usual law of the iterated logarithm we have
Lp = 4pq where p and q are the probabilities assigned to the two points (q := 1−p). The
result also follows by observing that

Sp̃ = 2pq

 q −√pq

−√pq p

 ,

with trace of 2pq and a single zero eigenvalue, implying L (2; p̃) =
√

2ψ(p̃) = 2
√
pq.

Example 3 (Discrete Uniform Distribution). Consider a uniform distribution on
m(≥ 1) points, of interest as it maximizes the trace of Sp̃ among all m-point support
distributions. In this case the matrix Sp̃ can be written succinctly as

Sp̃ =
(

1
m

)
Im×m −

(
1
m2

)
1m×11

′

m×1
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a

0.0

0.5

1.0

b

0.0

0.5

1.0
0.0

0.5

1.0

Fig. 1: L (2; p̃): three point support

The above makes it is clear that the vectors in the (m− 1 dimensional) space orthogonal
to 1m×1 are eigenvectors with eigenvalue 1/m, implying a maximum eigenvalue of 1/m
and L (2; p̃) =

√
2/m. This result also follows from Lemma 3 of (Finkelstein, 1971).

Interestingly, among all m-point support distributions that have tr(Sp̃) = 1− (1/m), the
uniform on m points minimizes the maximum eigenvalue.

Example 4 (Three Point Support). Consider an arbitrary discrete distribution sup-
ported on three points. In this case it can be checked that the two non-zero eigenvalues
of the matrix Sp̃ are

(
1
2

)tr(Sp̃)∓

√√√√2
3∑

i=1

p4
i −

3∑
i=1

p2
i + 6

∑
1≤i 6=j≤3

pip2
j − 2p1p2p3 − 1


Figure 1 is an image plot of L (2; p̃) as a function of a and b of the stick breaking

parametrization of a three point distribution, i.e.

p1 = a, p2 = (1− a)b, and p3 = (1− a)(1− b).

Noteworthy is that the maximum value of L (2; p̃) is 1, attained at (1/2, 0), (1/2, 1) and
(0, 1/2) - all representing the uniform distribution on two points.
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Example 4 shows that the maximum value of L (2; p̃) among 3-point distributions is
attained at a 2-point distribution, leading one to conjecture that the maximum of L (2; p̃)
among all discrete distributions is attained at the uniform distribution on two points.
This conjecture is settled in the affirmative by the following result:

Theorem 2. For all p̃ in S∞ we have 0 ≤ L (2; p̃) ≤ 1. If L (2; p̃) = 0 then p̃ is a
degenerate distribution. If L (2; p̃) = 1 then p̃ is the uniform distribution on two points.

PROOF. Without loss of generality we will assume that at least two components of p̃
are positive. Let z̃ be an eigenvector of Sp̃ which corresponds to its maximum eigenvalue,
say λ. Since

√
p̃ is in the null space of Sp̃ and Sp̃ is self-adjoint, we have <

√
p̃, z̃ >= 0

(see for example, Theorem 9.1-1 of (Kreyszig, 1978)). This implies,

zi(pi − λ) =
√
pi < z, p̃3/2 >, i = 1, 2, . . . (9)

and moreover that λ = (
∑

i≥1 z
2
i pi)/

∑
i≥1 z

2
i . From the last expression it follows easily

that λ ≤ maxi≥1 pi. Now we show that if λ = pj for some j ≥ 1 then λ ≤ (1/2). This
is so as λ = pj for some j ≥ 1 and (9) imply that < z, p̃3/2 >= 0. Hence zi = 0 for
all i such that pi 6= pj . This along with <

√
p̃, z̃ >= 0 and z̃ 6= 0 implies that the set

{i ≥ 1|pi = pj} has at least two points. Hence 2pj ≤ 1 or λ ≤ (1/2).
The only case we need to rule out is that of p1 > λ > (1/2) > pj for j ≥ 2. Suppose

this case holds. Defining α := z2
1/
∑

i≥1 z
2
i , we have (1/2) < λ ≤ αp1 + (1 − α)p2,

which implies (1 − α) < [p1 − (1/2)]/(p1 − p2). As p1 + p2 ≤ 1 and p1 > p2 we have
[p1 − (1/2)]/(p1 − p2) ≤ 1/2, and hence that α > 1/2. Finally, by using the Cauchy-
Schwartz inequality and the fact that <

√
p̃, z̃ >= 0 implies z1

√
p1 = −

∑
j≥2

√
pjzj , we

have

λ ≤
p1z

2
1 + p2

∑
j≥2 z

2
j∑

i≥1 z
2
i

≤
∑

j≥2 pj

∑
j≥2 z

2
j + p2

∑
j≥2 z

2
j∑

i≥1 z
2
i

= (1− (p1 − p2))(1− α) <
1
2

A contradiction. Hence the proof.

Remark 2. We note that the upper bound of 1 on L (2; p̃), provided by the above
theorem, leads to an improvement of statement (3):

sup
r≥2;p̃

L (r; p̃) ≤ 2(2−r)/2r (10)

4. An Approximation of L (2; p̃)

Consider the problem of estimation of the mass function using a random sample of size
n from a distribution with support contained in the set of integers. Since quite generally
the empirical mass function is asymptotically optimal in the sense of mean integrated
squared error, see (Watson and Leadbetter, 1963), it is an estimator of interest. Hence
the limit superior in (2) with r = 2, viewed as an asymptotic worst case measure of
estimation error incurred by the empirical mass function, is a quantity of interest. This
is one motivation to compute the value of L (2; p̃).
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Example 4 suggests that a closed form solution for L (2; p̃) is unattainable. For a given
distribution with finite support, one can resort to numerically computing L (2; p̃). For
distributions with infinite support, an approximation is needed. The following theorem
gives one such approximation along with an error bound. First we need to define the
operator Tp̃ from l2 to l2:

Tp̃(x̃) :=
{√

pixi − pi <
√
p̃, x̃ >

}
i≥1

, x̃ ∈ l2

Note that Tp̃ is related to Sp̃ by Sp̃ = T
′
p̃Tp̃. It follows then that ψ(p̃) is the squared norm

of the operator Tp̃. Now consider the canonical basis for l2 and let Pn be the projection
onto the span of its first n elements. It is easily seen that Tp̃:n defined as PnTp̃Pn is such
that if ỹ = Tp̃:n(x̃) then ỹ is given by

yi =


√
pixi − pi

n∑
j=1

√
pjxj i = 1, . . . , n;

0 i > n;

.

Finally, let Sp̃:n be defined as T
′
p̃:nTp̃:n.

Theorem 3. For any probability distribution p̃ we have

L (2; p̃) = lim
n→∞

√
2 sup
‖x̃‖=1

x̃′Sp̃:n(x̃) (11)

Moreover, ∣∣∣L (2; p̃)−
√

2max. eigenvalue of Sp̃:n

∣∣∣ ≤√10
∑
j>n

pj , n = 1, 2, . . . (12)

PROOF. Let (Tp̃ − Tp̃:n)(x̃) = ỹ, where ỹ is given by

yi =

−pi

∑
j>n

√
pjxj , i = 1, . . . , n;

√
pixi − pi <

√
p̃, x̃ >, i > n;

.

Now with multiple use of the Cauchy-Schwartz inequality we have,

‖ỹ‖2 =

 n∑
j=1

p2
j

∑
j>n

√
pjxj

2

+
∑
j>n

pjx
2
j +

(
<
√
p̃, x̃ >

)2∑
j>n

p2
j − 2 <

√
p̃, x̃ >

∑
j>n

p
3/2
j xj

≤ 5

∑
j>n

pj

 ‖x̃‖2

The above implies that ‖(Tp̃ − Tp̃:n)(x̃)‖2/‖x̃‖2 is bounded above by 5
∑
j>n

pj ; in other

words ‖Tp̃ − Tp̃:n‖ ≤
√

5
∑

j>n pj . This implies (12) which in turn implies (11). Hence
the proof.
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(a) Poisson Distribution
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(b) Geometric Distrbution

Fig. 2: The limit superior as a function of the parameter

Example 5 (Poisson and Geometric Distributions). As an example of a discrete
distribution with infinite support we consider the Poisson and geometric distributions.
For these the approximation to L (2; p̃) along with accompanying error bounds derived
from Theorem 3 are plotted in Figure 2. The approximation was based on the first 40 (i.e.
with n = 40 in Theorem 3) terms of these distributions; the error bounds become wider
as the mass moves to the right, corresponding to low p values in the case of the geometric
and high λ values in the case of the Poisson. We note that this can be improved upon by
considering the n most probable values rather than the initial n values. The latter uses
the fact that L (2; p̃) is invariant to any one-to-one transformation of the distribution.

Note that the maximum of L (2; p̃) is attained in both cases in the proximity of the
parameter value corresponding to p1 = 0.5 (corresponding to the probability at 0). In
this sense, the plot in view of Theorem 2 is not very surprising, even though not entirely
obvious either.
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